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Abstract

The ability to reliably detect coronary artery disease based on the
acoustic noises produced by a stenosis can provide a simple, non-invasive
technique. Current research exploits the shear wave fields in body tissue
to detect and analyze coronary stenosis. A mathematical model of this
system couples the generation of these acoustic noises with the propaga-
tion of the sound and shear waves through the chest cavity. In our initial
investigations we consider a one-dimensional, homogeneous viscoelastic
model. A quasi-linear viscoelastic stress-strain relationship was proposed
by Fung [8] for a variety of biological tissues. Though an effective model,
this formulation presents significant computational difficulties in dynamic
situations. We present several alternate constitutive relations, based on an
internal variable formulation, that approximate Fung’s constitutive rela-
tion well when optimized. More importantly, results from the correspond-
ing dynamic models match well with simulated data of wave propagation
through a homogeneous soft tissue-like gel.

Mathematics Subject Classification: 65M32, 74D10, 74J30
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1 Introduction

Coronary artery disease (CAD) is the buildup of plaque (cholesterol, calcium,
and platelets) in the inner wall of coronary arteries known as stenosis in which
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Figure 1: Turbulent blood flow generated by a stenosis.

blood flow is restricted and the oxygen supply to the heart muscle is decreased.
The end result of arterial stenosis is permanent damage to the heart muscle. It
is estimated that CAD affects more than 12 million people in the United States,
and it is the single leading cause of death and premature permanent disability
[2]. As such, the detection and treatment of CAD is a high priority.

It is well known that arterial stenoses produce sounds due to turbulent blood
flow in partially occluded arteries (see e.g., [1] or [27]). In principle, turbulent
normal wall forces exist at and downstream from arterial stenosis. These wall
forces, which are extremely small, exert a pressure on the wall of the artery,
which then causes a small displacement in the surrounding soft tissue (see Fig-
ure 1). The vibrations of the surrounding body tissues, which occur in two
forms, a compressional wave and a shear wave, produce sounds [23], [27]. In
larger arteries such as the carotid arteries, these acoustic sounds can be de-
tected by physicians using a stethoscope. However, detecting acoustic signals in
smaller arteries deep inside the body has proved difficult for two reasons: these
acoustic noises attenuate significantly as they travel through the intervening tis-
sues [23], and, moreover, many complex sounds within the body can overwhelm
conventional acoustic detection systems.

Current detection techniques include the angiogram which is a reliable, yet
expensive, invasive technique and prone to interobserver variability (see e.g., [9],
[17]). Ultra-fast CT techniques are also employed; this is a non-invasive imaging
technique effective in detecting and scoring the severity of calcium deposits in
the coronary arteries. CT testing equipment is very expensive. However, the
biggest limitation is that the method only detects calcium deposits and not the
soft plaques that make up many of the most dangerous lesions.

The ability to reliably detect coronary artery disease based on the acous-
tic noises can provide a simple, non-invasive approach [18]. Current research
exploits the shear wave fields in body tissue to detect and analyze coronary



stenosis [15]. At low frequencies (<2 kHz), shear wave attenuation and wave
propagation speed is low, which proves useful for studying propagation char-
acteristics and estimating mechanical properties of tissue-like media. Recent
techniques measure the shear wave propagation at the surface of the chest wall
using a multiple array of sensors. Phased array signal processing is then used to
image the underlying volume and locate stenosis sites within the coronary tree.

A complete mathematical model for this acoustic wave system couples two
separate processes: (1) the generation of the sound and shear waves at the
arterial stenosis and transmission through the arterial wall, and (2) the prop-
agation of the sound, or shear waves, through the chest cavity to the external
acoustic sensors. Modeling the wave propagation through the chest cavity is a
nontrivial task. It is well accepted that body soft tissue medium behaves like
a viscoelastic medium [8]. In addition, the acoustic waves will travel through
ribs and at least two sorts of tissue: lung tissue and muscular connective tissue.
These spatial inhomogeneities in the propagating medium cause spatial changes
in the medium’s propagation speed. These variations induce refractive effects,
which bend the rays along which the wave propagates and ultimately leads to
multi-paths.

In this paper we address the second process: the shear wave propagation
through a viscoelastic, heterogeneous medium. To start, however, we first an-
alyze the most simple case, i.e., a one-dimensional, homogeneous viscoelastic
model for which experimental data is readily available. The corresponding
physical model is depicted in Figure 2; the synthetic gel has material prop-
erties similar to those of soft tissues and the tube mimics an arterial vein with
stenosis.

The motion of a viscoelastic body is governed by the laws of conservation
of mass and momentum, the stress-strain (constitutive) relations, plus bound-
ary and initial conditions. A quasi-linear viscoelastic stress-strain relationship
which captures well the viscoelastic characteristics for a variety of biological
tissues was proposed by Fung [8] for soft tissues. The constitutive relation in-
corporates a continuous spectrum of relaxation times into the model, and gives
the stress in terms of a Boltzmann integral which depends on the history of the
elastic response rate. Though effective in modeling quasi-static creep and relax-
ation, this formulation presents significant computational difficulties in dynamic
situations.

In an effort to avoid some of these computational challenges, we investigate
the effectiveness of using alternative stress-strain formulations to model time
dependent shear wave propagation through a homogeneous medium. We will
present several simple formulations that, when optimized, approximate well
Fung’s constitutive relation. More importantly, results from the corresponding
dynamic models match well with simulated data of wave propagation through
a homogeneous soft tissue-like gel.

The organization of the paper is as follows. We first develop the model equa-
tions in Section 2. In Section 3 we introduce alternative stress-strain constitu-
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Figure 2: The 1D homogeneous viscoelastic model.

tive relations and compare with Fung’s formulation. The physical and dynamic
models are given in Section 4, and we discuss the computational method for
integrating the models in Section 5. In Section 6 we present model simulations
and compare with data, and follow with conclusions in Section 7.

2 Model Formulation

We first develop the one dimensional model equations based on Newton’s law of
motion, the principle of conservation of mass, and laws of thermodynamics. In
the following, let u, o, and X denote the Cartesian shear displacement, shear
stress, and body force per unit volume, respectively. Let p denote the mass
density and v denote the shear velocity du/dt. X is a source term for the
acoustic sound propagation.

From the conservation of mass, we have the continuity equation

op O B
ot + %(pfu) =0. (1)

Conservation of momentum implies that

Opv 0, 5, Oo
ot Tag ) =5 X

Using equation (1) in the left side of the above equation, we have the Eulerian



equation of motion of a continuum

@4_ @ —8_0+X
P\ot "0z ) T bz )

Since we are interested in only small displacements, we ignore the higher order
term pvdv/0z to obtain
&%u  Odo
Pop _8a:+X' (2)
We next obtain a constitutive equation that relates stress and strain, and
eventually stress and displacement. The medium of interest is soft tissue (arter-
ies, muscle, skin, lung, etc...) which is considered viscoelastic material. That is,
soft tissue exhibits the characteristics of creep (a slow progressive deformation of
a material under constant stress), relaxation (a gradual decrease of stress when
the material is held at constant deformation), and hysteresis (the stress-strain
curve in the loading process is usually different than in the unloading process).
The quasi-linear relation proposed by Fung [8] describes the quasi-static
behavior of many biological soft tissues (see, e.g., [5],[10],[11], [19],[20],[21],[25],
[28],[29],[30]). This relation between stress and strain in simple elongation is
given by .
o) = [ Ge-n 2D gy (3)
0

T

where G(t) and o.(A(+)) are the reduced relaxation function and the elastic
response, respectively. Here, the relaxation function is assumed to be separable
in time and strain.

By definition, the elastic response is the tensile stress instantaneously gen-
erated in the tissue when a step function of stretching A is imposed on the
specimen. For many materials, it may be approximated by

do
d; =afo. +8), 0.(1)=0, (4)
where a and 3 are constants to be estimated from data. For a justification of

this approximation, see [8], p. 279. We recall [3], [8] that the stretch ratio A is
related to the infinitesimal strain e (and displacement u) by the equation

u\2
)\2 =14+2FE;; = (1+6_1.;> = (1+€)2.
Solving equation (4) for o., we then have
0e(M(t) = =B + Be?/%7. (5)

The reduced relaxation function proposed by Fung is given by

G(t) = {1+C [El(i)—El(i)]} [1+cln <7—2>]1 (6)

T2 T1 T1



where FE;(2) is the exponential integral function defined by

o _—t
Bi() = / s

The parameters C, 7, and 7» are constants determined from data; the constant
C represents the degree to which viscous effects are present, 7 and 7» represent
the fast and slow viscous time phenomena, respectively [22]. Fung’s formulation
provides a continuous spectrum of relaxation. This is a departure from other
models that commonly express the relaxation function as the sum of exponential
functions where each exponent is identified with the rate constant of a relaxation
mechanism, i.e., .
—u;
G(t) = Zciie_
> Ci

According to Fung, such a model will have discrete relaxation rate constants
and corresponds to a discrete hysteresis spectrum; this is incompatible with the
observation that, for many biological soft tissues, the hysteresis loop is nearly
independent of the strain rate within several decades of the rate variation.
Equations (2), (3), (5), and (6) comprise an integro-differential system. In
summary, the one-dimensional equations for wave propagation through a ho-
mogeneous, viscoelastic medium are the equation of motion (2) and Fung’s
stress-strain relation (3) with the elastic response and reduced relaxation func-
tion defined by (5) and (6), respectively. Because the constitutive equation (3)
is in integral form with a complicated kernel described by equation (6), it must
be approximated computationally. This requires the storage of the history of
the kernel function G(t) in small time increments. Furthermore, this time dis-
cretization might be considerably smaller than the time discretization used in
the approximation of the equation of motion (2) (so that the errors in computing
the constitutive equation do not contribute to the errors in approximating the
acoustic energy). This is especially true in the case where the elastic response
o, is highly oscillatory, as in our study here. For computational efficiency, we
propose alternatives to Fung’s constitutive equation in the following section.

3 Constitutive Law Formulations and Compar-
isons

In this section we propose three computationally tractable alternatives to Fung’s
quasi-linear constitutive equation for soft tissues and compare them numerically
to Fung’s formulation. The idea is to consider internal variable models (Maxwell
solids in differential form) as in [12] and, more recently, in investigations of
nonlinearities and hysteresis arising from a class of magnetorheological-based
smart elastomers [3], [4]. The basic assumption is that one has a finite number



of “internal strain” variables, €;(¢),j = 1,...,N, driven by the infinitesimal
strain €(t) = A(t) — 1. In this formulation the stress is given by

N

olt) = Y &5(0). 7

i=1
The internal strains can be modeled dynamically as

de;(t) do.

—E = e + Gt (M), i=1 N, (8)

Using the variation of constants formula, solutions to the above system of dif-
ferential equations with zero initial conditions, €;(0) = 0, are given by

t
—vj(t—s d :
ej(t):/o Cje™ ) Lo (A()ds,  j=1,.., . )

Note that the internal variable approach (7) is equivalent to the integral for-
mulation (3) with an exponential form for the reduced relaxation function, i.e.,
G(t) = Zfil Cje v, The difference in these two formulations is only in their
numerical implementation: using (3) one deals with numerical approximation
of an integral function without any consideration of internal dynamics, whereas
using the internal variable approach (7) one has to numerically solve a decou-
pled system of differential equations. Computationally, one expects that the
internal variable model approach is much more efficient in terms of both speed
and data storage.

More generally, the internal strains might be modeled by nonlinear dynamics
of the form

dejjft) = g;(;(t) + C; dgte
However, this formulation cannot be written in Boltzmann form.

We will compare Fung’s constitutive relation (3) with several constitutive
relations resulting from the internal variable approach. Let N =1 in (7), then
a(t) = e1(t), G(t) ~ Cie7 "1, and o is obtained as the solution of the following
linear ordinary differential equation (ODE)

do 0o,

i —vio(t) + Clﬁ(/\(t))’ a(0) = 0. (11)

The constants C; and »; are unknown constants to be determined later; o ()
is given in (5). Similarly, if we let N = 2, then o(t) = €;(t) + e2(t) and G(t) =
Cre "1t 4+ Cye~v2t. The internal strain variables €;, €, satisfy the following
linear ODEs, respectively,

(A@®), j=1,...,N. (10)

% = —vi€ (t) +C 880; (/\(t)), €1 (0) =0 (12)
des 0o,
’ = —uaea(t) + Co 5 (A1), e(0)=0



The parameters C1, Cy, v1, and v, are the corresponding unknown constants
to be determined later. Considering the nonlinear dynamics formulation (10)
with N = 1, we have in a third case o(t) = €1(t) and o is the solution of the
following nonlinear ODE

W = glo) + K201, 0(0) =0. (13)

We assume that g(z) = 22_121 a;l;(z) is a piecewise linear function of ¢. In this
case there are five constants to be determined: K, a1, as, a3, a4.

To determine the effectiveness of the internal variable formulations, we com-
pared the stress obtained numerically from each relation given above: Fung’s
stress-strain integral equation (3) using kernel (6), the ODE from using a one-
exponential kernel (11), from using a two-exponential kernel (12), and the piece-
wise linear ODE (13). In each case, we set u;(z,t) = —msin(wt), with m = 0.1
and w € [100, 600], the frequency range of interest. Values for a and 3 were set
as @ = 0.1 and 8 = 1.0 (see [6]). To compute Fung’s kernel we set ¢ = 0.05,
71 = 0.005, and 75 = 50 (again, see [6], [22]). We will assume, for the sake of
comparison, that the constitutive equation from Fung is exact.

Each of the equations was solved numerically in MATLAB. For the inte-
gral expression we used an adaptive recursive Newton Cotes 8 panel rule. The
ODEs were solved using the solver ODE15s, a variable order method for solv-
ing stiff ODEs. We initially set the unknown constants to values such that the
corresponding kernels were decent approximations of Fung’s kernel (6). The
constants were then optimized using the Nelder-Mead simplex algorithm [14] so
as to best approximate the o obtained using Fung’s kernel.

Figure 3 depicts the stresses o;(t) obtained by each of the four constitutive
equations with frequency w = 600Hz. Since the function is very oscillatory,
we show o;(t) only for ¢ € [0.09,0.1]s. Figure 4 is the same plot, but over
a smaller time interval to indicate more clearly the numerical differences. In
each plot, o obtained from Fung’s method is indicated with a solid line labeled
O fung, the one-exponential method is indicated with a dashed line (oezp1), the
two-exponential method is indicated with a dashed-dot line (oesp2), and the
nonlinear method is indicated with a dotted line (o).

The differences between ¢ using Fung’s kernel and the alternate constitutive
equations with optimized constants are slight. We emphasize that the unknown
constants were optimized to match o, and not so that the exponential kernels
best match Fung’s kernel. In general, more exponential terms in the kernel are
needed to obtain good agreement with Fung’s kernel.

We conclude from this numerical experiment that the alternate constitutive
equations match quite well with Fung’s stress-strain relation. Since the alternate
relations are in differential form, the formulation is easy to implement and no
longer requires the cumbersome storage of kernel history data. In the following
sections we include the various stress-strain equations in the dynamic model
and compare results with simulated data. First, we present the physical and
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Figure 5: The simplified physical model.

dynamic models, together with boundary and initial conditions, and discuss the
numerical method used to integrate the models.

4 Physical and Dynamic Models

The simplified physical model is a cylindrical gel mold (such as those used in
physical experiments at MedAcoustics) with a surgical tube passing through
the center axisymmetrically. A source disturbance is generated within the tube.
Shear waves propagate through the gel, and the shear displacement is measured
(by sensors) at the gel outer surface. The gel possesses the material character-
istics of soft tissue. The disturbance within the tube represents a source due to
stenosis. Let Ry and R» be the inner and outer radius of the gel, respectively.
(see Figure 5). We assume that the source disturbance is time dependent, has
only a radial component (i.e., it is axisymmetric), and the disturbance is a pure
shear force. The outer surface of the gel is a free surface. The gel is initially at
rest.

The one dimensional equations governing the shear stress (o(t,r)) and shear
displacement (u(t,r)) are

&u _ 9o

Parz = or
t

olt) = / Gt — 5)2 (Beadv) ds (14)
0 0s

U(tv Rl) = f(t)v O'(t, R2) =0,

10



where G(t) is Fung’s reduced relaxation function, 8e®%* represents the elastic
response, and f(t) is the input shear stress. Since we are interested in the
feasibility of a more computationally efficient stress-strain relation, we will not
integrate the dynamic model with Fung’s stress-strain relation.

Instead, in light of the simulation results for alternative stress formulations in
the previous section, we concentrate on the internal strain variable constitutive
relations. Using equation (11) as the stress-strain relation (i.e., G(t) ~ Cie~"1?),
we find that system (14) is equivalent to

ou _ o
Poiz = ar

oo 0 ao,u

E = -0+ Clﬂa(e ) (15)

U(t, Rl) = f(t), U(ta R2) = 0;

The unknown constants are C7, v, and «; since C; and 3 always appear as a
product, we set 8 = 1 and let C; be the unknown constant. Using equation
(12) as the stress-strain relation (G(t) ~ Cie™"'t + Cye~"2t), system (14) is
equivalent to

8%u 0

Por = gt
B B
% = —11€1 + Clﬂa(eaﬁru)
) B
5 = —Uses + czﬁa(eaaru) (16)

a(t,R1) = ~f(t), et R)=0,
62(t7R1) = (1 - ’Y)f(t)a 62(taR2) = 07

where o(t,r) = €1(t,7) + e2(t,7), and v is a free parameter used to set the
boundary conditions. The unknown constants in this system are Cy, Ca, v,
v, and a. Finally, if we use the piecewise linear constitutive relation, equation
(13), then we have the following nonlinear system

Pu _ 0o

Porz = or

0o 0, woou

= o)+ Ky (™) a7)

U(t, Rl) = f(t), U(ta R2) = 0;

where g(o) = 22:1 a;li(o) as before. The unknown constants are K, a;, as,
as, a4, and a.

In the next section we describe the numerical method used to integrate each
of the approximate systems.

11



5 Computational Methods

We use the same method to numerically integrate each of the approximate
systems presented above. For simplicity, we present the method with respect
to the one-exponential system given in (15); the two-exponential and piecewise
linear systems are treated similarly.

First, we rewrite the (u,o) system as a first order system in v, w, and p
where v = Ou/0t, w = Ou/0r, and p = o0 — CPe®” (or p; = €; — C;Be*"). The
corresponding (v, w, u) system for system (15) is

0

6—'[; = —uv(p+ Ci5e*™)

v 10 ow

% - ;E(M + C1Be*") (18)
v _ o

ot  or’

which is now in conservative form and is essentially hyperbolic.

Physical boundary conditions are prescribed in terms of o, but are translated
into boundary conditions for w by analytically integrating the stress-strain equa-
tion in system (15) over (0,t), and solving for w(t,r) at the boundaries (r = Ry
and r = R»). The boundary conditions for w are then

— aw(0,R1) t
w(t,Ry) = é 1n<f(t) f(o)+clﬂ601ﬁoa + 0 [ £(s) ds)
w(t,Ry) = w(0,Ry).

Since the gel is initially at rest, the initial conditions are v(0,r) = 0, w(0,r) = 0,
and p(0,7) = —C1 8.

To numerically integrate the system, subject to the above boundary and
initial conditions, we employ a MacCormack finite difference scheme which is
second-order in space and time. Boundary conditions for v and u are updated
using local direction cosines at the domain boundaries (see, e.g., [13] or [24]
on hyperbolic systems). If the local direction points into the domain, then the
update uses the new boundary data (i.e., w(t"*!, R;) or w(t"*', Ry)). Oth-
erwise, the local direction points out of the domain, and boundary values are
updated using data from the domain interior and second-order differences to
approximate any spatial derivatives.

The stability of the method is verified through a Von Neumann analysis
of the linearized (u,v,w) system about the initial condition. We apply the
MacCormack scheme to the linearized model and then substitute in planar waves
of the form v = veikrtwt) ) = @eilkr+wt) and p = peikrtwt) | Let y = eiwAt
be the amplification factor, and let § = jAr, 7 = At/Ar and v = Cpa/p.

12



Nontrivial solutions for f,?,w imply the following condition for x,

-1 =12+ -1 {a

A
1- VTt) + 27%y(1 — cosﬁ)}

+7%y {I/At(l - %At)(l —cosf) + (T27y2ft2 )(1 = cos 6)*
+(1- %At)z sin20}] = 0.
Solving this expression for y, we have y =1, or
x = 1-=712y(lcosb) — VTAt(l - VTAt)
\/”Qf2 (-2 - ”2ft2 72(1 ~ cosf)? —r29(1 — 22 5in% 0

The scheme is stable when |x| < 1. Since x depends on seven parameters:
C, v, a, B, p, At/Ar, and At, we easily check the stability of the scheme for a
particular parameter set using the above expression for x, rather than determine
a domain of stability. For the computational experiments described in the next
section, we verified that the parameter set produces a stable scheme.

We performed a grid refinement to verify the second-order accuracy of the
scheme. This was done with the forced (u,v,w) system by choosing an exact
solution and setting the forcing functions appropriately. We chose the following
exact solutions for v and o,

w(t,r) = —m(1 — cos(wt) (%)2, o(t, ) = msin(wt) (%) ,

where m is the oscillation amplitude, and w is the oscillation frequency. For
these calculations, m = 0.1 and w € [100,600] Hz. The exact solutions for the
(1, v, w) system are calculated as p = o — CfBe*¥, v = ug, and w = u,.

To perform the grid refinement, we fix the ratio 2—: and repeatedly halve
the time step and the spatial increment. The truncation error for each variable
is computed as the Ly, norm of the difference between the exact and numerical

solutions. For example, the truncation error for y is

En(p) = [|(T,r3) — 1) [loo

where p(T,r;) and pl are the exact and numerical solutions, respectively, at
the point (7', r;). The superscript N = T' /At indicates the number of numerical
time increments, and r; = Ry + iAr, i = 1,..., N,, represents the spatial grid
points. The subscript n indicates the level of refinement; initially n = 0. With
each refinement, we increment n and double the total number of time steps
(N) and the number of grid points (N,). Setting £t=1/20sm~'., T = 5s,
Ry — Ry = 1m., and N, = 40 for the initial convergence test, we compute the
ratio By, (-)/En41() for each state variable. The results for v are given below.

13



Table 1: Grid Refinement Analysis for v

0 [ B (0)lloo | 1B ()lloe/ I B2 (0) o
0 0.1295

1 0.0321 4.03

2 0.0080 4.01

3 0.0020 4.00

4 | 5.0054e-04 3.99

A ratio of 4 indicates the code is second order accurate. Results for w, and
p are similar.

Hence the scheme is indeed stable and second-order accurate. In the next
section we will compare this system, as well as the two exponential and piecewise
linear systems, with published data.

6 Model Simulations

To measure the ability of the approximate systems to match experimental data,
we compare the results of the dynamic models presented in Section 4 with
simulation data derived from the experimental results of Verburg. This is a first
step in the ultimate goal of matching shear displacement data measured on the
the outer surface of the gel.

In [26] Verburg presents wave speeds per frequency for shear waves propa-
gating through a homogeneous medium with mechanical properties similar to
the lung tissue located between the heart valves and the chest wall. Output
data is generated from the Verburg data in the following way. First, the input
signal is a sum of weighted sine waves with a sampling rate of 12288 Hz and
Af = 6 Hz. Using the Verburg wave speeds, a phase shift is calculated for each
input frequency. The output signal is then the weighted sum of sine waves with
velocity phase delays. The resulting simulation data does not account for atten-
uation due to damping or dispersion loss. Also, the input and output data sets
are the same order derivative in time. Since the dynamic model expects input
shear stress, we interpret the simulation data as force in (scaled by a constant)
and acceleration out (see Figure 6 for a graph of the input function).

To compare the model with this simulated data, we solve the associated best
fit inverse problem. In other words, we make an initial guess for the unknown
constants in the model, then optimize the constants using the Nelder-Mead
algorithm. The Nelder-Mead cost function is the L; norm of the difference
of the simulated output data and the model acceleration data at the outer
boundary (r = R2). The model acceleration data is generated by solving the
forward problem, i.e, by numerically integrating the dynamic model. Note, the
acceleration data is obtained as a finite difference approximation of dv/0t.

In Figures 7-9 we compare the simulated Verburg data and the optimized
dynamic model data. Each figure contains two plots. The top plot compares
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Figure 6: The input shear stress function o (¢, Ry) = f(t)-

the normalized acceleration data (normalized since the simulated data does not
account for dissipation). The bottom plot compares the normalized fast Fourier
transform (FFT) of the output data. This plot indicates which frequencies are
excited by each model. In all plots, the simulated Verburg data is indicated
with a solid line; the model data is indicated with a dashed line.

Figure 7 exhibits data from the one-exponential system (15), Figure 8 presents
data from the two-exponential system (16), and data from the piecewise linear
system (17) is shown in Figure 9.

Note that the unknown constants are optimized only with respect to the ac-
celeration data. That is, the fit-to-data uses the acceleration data; the FFT of
the optimized model is then compared to the FFT of the data. Any additional
matching of the FFT data is an independent indicator that the alternate mod-
els are reasonable. In each case the optimized systems achieve the correct time
lag in the acceleration data. None of the model simulations contain the small
oscillations that appear for ¢ > 0.03s, probably because the internal strain vari-
able models contain dissipation whereas the simulated data does not. Clearly,
the optimized two-exponential model produces the best approximation with the
simulated data; differences in this case are nearly indiscernible.

7 Conclusions

In the case of simple one-dimensional shear wave propagation through a homo-
geneous soft tissue (viscoelastic) medium, we have demonstrated that dynamic
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simulation using an internal variable based constitutive relation matches well
with data. Moreover, the internal strain variable formulations lead to systems of
first order differential equations, rather than an integro-differential model, mak-
ing the alternate models more computationally tractable. It should be noted
that these alternate constitutive relations may not match well with Fung’s re-
lation (3) in all respects of viscoelastic behavior. However, the main goal in
the efforts reported here is to match shear displacement data after propaga-
tion through a soft tissue-like medium. In this respect, the optimized models
with internal variable strain formulations are, we believe, adequate. The one
and two-exponential models correspond to standard kernel formulations in vis-
coelastic theory (i.e., a finite series of Kelvin models). It is quite possible that
the simulated Verburg data does not capture all nonlinear behavior that might
be present in complex experimental data. Hence our models with linear internal
dynamics and nonlinear coupling with the infinitesimal strain produce a good fit
to this data. However we also achieve decent agreement between data and the
model with nonlinear internal dynamics (as represented by the piecewise linear
model), which offers promise for use of this class of models with more complex
data. Future efforts will include modeling of the two-dimensional propagation
problem. In this case there is a variety of experimental data available to be
employed in model validation.
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